Review 03, No Calculator

Complete all the following on notebook paper.

If $f(x) = x^{\frac{3}{2}}$, then f'(4) =

- (A) -6 (B) -3
- (C) 3
- (D) 6
- (E) 8

2.

Which of the following represents the area of the shaded region in the figure above?

(A)
$$\int_{c}^{d} f(y)dy$$

(B)
$$\int_{a}^{b} (d-f(x))dx$$
 (C) $f'(b)-f'(a)$

(C)
$$f'(b) - f'(a)$$

(D)
$$(b-a)[f(b)-f(a)]$$

(E)
$$(d-c)[f(b)-f(a)]$$

$$\lim_{n \to \infty} \frac{3n^3 - 5n}{n^3 - 2n^2 + 1} \text{ is}$$

- (A) -5 (B) -2
- (C) 1 (D) 3
- (E) nonexistent

If the function f is continuous for all real numbers and if $f(x) = \frac{x^2 - 4}{x + 2}$ when $x \ne -2$, then f(-2) =

- (A) -4
- (B) -2
- (C) -1
- (D) 0
- (E) 2

If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} =$

- (A) $-\frac{x^2+y}{x+2v^2}$
- (B) $-\frac{x^2+y}{x+y^2}$
- (C) $-\frac{x^2+y}{x+2y}$
- (D) $-\frac{x^2+y}{2v^2}$
- (E) $\frac{-x^2}{1+2v^2}$

6.

The area of the region enclosed by the curve $y = \frac{1}{x-1}$, the x-axis, and the lines x = 3 and x = 4 is

- (A) $\frac{5}{36}$ (B) $\ln \frac{2}{3}$ (C) $\ln \frac{4}{3}$ (D) $\ln \frac{3}{2}$ (E) $\ln 6$

_____ 7.

An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1,5) is

(A) 13x - y = 8

(B) 13x + y = 18

(C) x-13y=64

(D) x+13y=66

(E) -2x+3y=13

If $y = \tan x - \cot x$, then $\frac{dy}{dx} =$

(A) $\sec x \csc x$ (B) $\sec x - \csc x$ (C) $\sec x + \csc x$ (D) $\sec^2 x - \csc^2 x$ (E) $\sec^2 x + \csc^2 x$

____ 9.

If h is the function given by h(x) = f(g(x)), where $f(x) = 3x^2 - 1$ and g(x) = |x|, then h(x) = 1

(A) $3x^3 - |x|$ (B) $|3x^2 - 1|$ (C) $3x^2 |x| - 1$ (D) 3|x| - 1 (E) $3x^2 - 1$

____10.

If $f(x) = (x-1)^2 \sin x$, then f'(0) =

(A) -2

(B) -1 (C) 0

(D) 1

(E) 2

11. 2001—AB5

A cubic polynomial function f is defined by

$$f(x) = 4x^3 + ax^2 + bx + k$$

where a, b, and k are constants. The function f has a local minimum at x = -1, and the graph of f has a point of inflection at x = -2.

(a) Find the values of a and b.

(b) If $\int_0^1 f(x) dx = 32$, what is the value of k?

12. 2001—AB6

The function f is differentiable for all real numbers. The point $\left(3, \frac{1}{4}\right)$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6 - 2x)$.

- (a) Find $\frac{d^2y}{dx^2}$ and evaluate it at the point $\left(3, \frac{1}{4}\right)$.
- (b) Find y = f(x) by solving the differential equation $\frac{dy}{dx} = y^2(6-2x)$ with the initial condition $f(3) = \frac{1}{4}$.