90 Minutes—No Calculator

Notes: (1) In this examination, $\ln x$ denotes the natural logarithm of x (that is, logarithm to the base e).

- (2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- $\int_{1}^{2} x^{-3} dx =$
 - (A) $-\frac{7}{8}$ (B) $-\frac{3}{4}$ (C) $\frac{15}{64}$ (D) $\frac{3}{8}$

- (E) $\frac{15}{16}$
- If $f(x) = (2x+1)^4$, then the 4th derivative of f(x) at x = 0 is
 - (A) = 0
- (B) 24
- (C) 48
- (D) 240
- (E) 384

- 3. If $y = \frac{3}{4 + x^2}$, then $\frac{dy}{dx} = \frac{3}{4 + x^2}$
 - (A) $\frac{-6x}{(4+x^2)^2}$ (B) $\frac{3x}{(4+x^2)^2}$ (C) $\frac{6x}{(4+x^2)^2}$ (D) $\frac{-3}{(4+x^2)^2}$ (E) $\frac{3}{2x}$

- 4. If $\frac{dy}{dx} = \cos(2x)$, then y =

 - (A) $-\frac{1}{2}\cos(2x) + C$ (B) $-\frac{1}{2}\cos^2(2x) + C$ (C) $\frac{1}{2}\sin(2x) + C$
- - (D) $\frac{1}{2}\sin^2(2x) + C$ (E) $-\frac{1}{2}\sin(2x) + C$
- 5. $\lim_{n \to \infty} \frac{4n^2}{n^2 + 100000}$ is

 - (A) 0 (B) $\frac{1}{2.500}$
- (C) 1
- (D) 4
- (E) nonexistent

- If f(x) = x, then f'(5) =
 - (A) = 0
- (B) $\frac{1}{5}$
- (C) 1
- (D) 5
- (E) $\frac{25}{2}$

- 7. Which of the following is equal to ln 4?
 - $\ln 3 + \ln 1$
- (B) $\frac{\ln 8}{\ln 2}$
- (C) $\int_{1}^{4} e^{t} dt$ (D) $\int_{1}^{4} \ln x dx$ (E) $\int_{1}^{4} \frac{1}{t} dt$
- The slope of the line tangent to the graph of $y = \ln\left(\frac{x}{2}\right)$ at x = 4 is 8.
 - (A) $\frac{1}{8}$
- (B) $\frac{1}{4}$ (C) $\frac{1}{2}$
- (D) 1
- (E) 4

- If $\int_{-1}^{1} e^{-x^2} dx = k$, then $\int_{-1}^{0} e^{-x^2} dx = k$
 - (A) -2k (B) -k
- (C) $-\frac{k}{2}$ (D) $\frac{k}{2}$
- (E) 2k

- 10. If $y = 10^{(x^2-1)}$, then $\frac{dy}{dx} =$
 - (A) $(\ln 10)10^{(x^2-1)}$

- (B) $(2x)10^{(x^2-1)}$
- (C) $(x^2-1)10^{(x^2-2)}$

(D) $2x(\ln 10)10^{(x^2-1)}$

- (E) $x^2 (\ln 10) 10^{(x^2-1)}$
- The position of a particle moving along a straight line at any time t is given by $s(t) = t^2 + 4t + 4$. What is the acceleration of the particle when t = 4?
 - (A) = 0
- (B) 2
- (C) 4
- (D) 8
- (E) 12
- 12. If $f(g(x)) = \ln(x^2 + 4)$, $f(x) = \ln(x^2)$, and g(x) > 0 for all real x, then g(x) = 1
 - (A) $\frac{1}{\sqrt{x^2+4}}$ (B) $\frac{1}{x^2+4}$ (C) $\sqrt{x^2+4}$ (D) x^2+4 (E) x+2

- 13. If $x^2 + xy + y^3 = 0$, then, in terms of x and y, $\frac{dy}{dx} =$

- (A) $-\frac{2x+y}{x+3y^2}$ (B) $-\frac{x+3y^2}{2x+y}$ (C) $\frac{-2x}{1+3y^2}$ (D) $\frac{-2x}{x+3y^2}$ (E) $-\frac{2x+y}{x+3y^2-1}$
- 14. The velocity of a particle moving on a line at time t is $v = 3t^{\frac{1}{2}} + 5t^{\frac{3}{2}}$ meters per second. How many meters did the particle travel from t = 0 to t = 4?
 - (A) 32
- (B) 40
- (C) 64
- (D) 80
- (E) 184
- The domain of the function defined by $f(x) = \ln(x^2 4)$ is the set of all real numbers x such that
 - (A) |x| < 2
- (B) $|x| \le 2$ (C) |x| > 2 (D) $|x| \ge 2$
- (E) x is a real number
- 16. The function defined by $f(x) = x^3 3x^2$ for all real numbers x has a relative maximum at $x = x^3 3x^2$
- (B) 0
- (C) 1
- (D) 2
- (E) 4

- 17. $\int_0^1 x e^{-x} dx =$
 - (A) 1-2e
- (B) -1 (C) $1-2e^{-1}$
 - (D) 1
- (E) 2e-1

- 18. If $y = \cos^2 x \sin^2 x$, then y' =
 - (A) -1
- (B) = 0
- (C) $-2\sin(2x)$ (D) $-2(\cos x + \sin x)$ (E) $2(\cos x \sin x)$
- 19. If $f(x_1) + f(x_2) = f(x_1 + x_2)$ for all real numbers x_1 and x_2 , which of the following could define f?
 - (A) f(x) = x + 1 (B) f(x) = 2x (C) $f(x) = \frac{1}{x}$ (D) $f(x) = e^x$ (E) $f(x) = x^2$

- 20. If $y = \arctan(\cos x)$, then $\frac{dy}{dx} =$
 - (A) $\frac{-\sin x}{1+\cos^2 x}$

- (B) $-(\operatorname{arcsec}(\cos x))^2 \sin x$ (C) $(\operatorname{arcsec}(\cos x))^2$

(D) $\frac{1}{(\arccos x)^2 + 1}$

- (E) $\frac{1}{1+\cos^2 x}$
- 21. If the domain of the function f given by $f(x) = \frac{1}{1-x^2}$ is $\{x : |x| > 1\}$, what is the range of f?
 - (A) $\{x : -\infty < x < -1\}$
- (B) $\{x : -\infty < x < 0\}$
- (C) $\{x : -\infty < x < 1\}$

- (D) $\{x:-1 < x < \infty\}$
- (E) $\{x: 0 < x < \infty\}$

- 22. $\int_{1}^{2} \frac{x^{2} 1}{x + 1} dx =$
 - (A) $\frac{1}{2}$
- (B) 1
- (C) 2
- (D) $\frac{5}{2}$
- (E) ln 3

- 23. $\frac{d}{dx} \left(\frac{1}{x^3} \frac{1}{x} + x^2 \right)$ at x = -1 is
 - (A) -6
- (B) -4
- (C) = 0
- (D) 2
- (E) 6

- 24. If $\int_{-2}^{2} (x^7 + k) dx = 16$, then k =
 - (A) -12
- (B) -4
- (C) = 0
- (D) 4
- (E) 12

- 25. If $f(x) = e^x$, which of the following is equal to f'(e)?
 - (A) $\lim_{h\to 0} \frac{e^{x+h}}{h}$

(B) $\lim_{h \to 0} \frac{e^{x+h} - e^e}{h}$

(C) $\lim_{h \to 0} \frac{e^{e+h} - e}{h}$

(D) $\lim_{h \to 0} \frac{e^{x+h} - 1}{h}$

(E) $\lim_{h \to 0} \frac{e^{e+h} - e^e}{h}$

- 26. The graph of $y^2 = x^2 + 9$ is symmetric to which of the following?
 - I. The x-axis
 - II. The y-axis
 - III. The origin
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

- 27. $\int_0^3 |x-1| dx =$
 - (A) 0
- (B) $\frac{3}{2}$
- (C) 2
- (D) $\frac{5}{2}$
- (E) 6
- 28. If the position of a particle on the x-axis at time t is $-5t^2$, then the average velocity of the particle for $0 \le t \le 3$ is
 - (A) -45
- (B) -30
- (C) -15
- (D) -10
- (E) -5
- 29. Which of the following functions are continuous for all real numbers x?
 - $I. \quad y = x^{\frac{2}{3}}$
 - II. $y = e^x$
 - III. $y = \tan x$
 - (A) None
- (B) I only
- (C) II only
- (D) I and II
- (E) I and III

- $30. \quad \int \tan(2x) dx =$
 - (A) $-2\ln|\cos(2x)| + C$
- (B) $-\frac{1}{2}\ln|\cos(2x)| + C$
- (C) $\frac{1}{2}\ln|\cos(2x)| + C$

- (D) $2\ln|\cos(2x)| + C$
- (E) $\frac{1}{2}\sec(2x)\tan(2x) + C$

- The volume of a cone of radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$. If the radius and the height both increase at a constant rate of $\frac{1}{2}$ centimeter per second, at what rate, in cubic centimeters per second, is the volume increasing when the height is 9 centimeters and the radius is 6 centimeters?
 - (A) $\frac{1}{2}\pi$
- (B) 10π
- (D) 54π
- 108π (E)

- 32. $\int_0^{\frac{\pi}{3}} \sin(3x) dx =$

 - (A) -2 (B) $-\frac{2}{3}$

The graph of the derivative of f is shown in the figure above. Which of the following could be the 33. graph of f?

(A)

(D)

- 34. The area of the region in the <u>first quadrant</u> that is enclosed by the graphs of $y = x^3 + 8$ and y = x + 8 is
 - (A) $\frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{3}{4}$
- (D) 1
- (E) $\frac{65}{4}$

- 35. The figure above shows the graph of a sine function for one complete period. Which of the following is an equation for the graph?
 - (A) $y = 2\sin\left(\frac{\pi}{2}x\right)$
- (B) $y = \sin(\pi x)$

(C) $y = 2\sin(2x)$

(D) $y = 2\sin(\pi x)$

- (E) $y = \sin(2x)$
- 36. If f is a continuous function defined for all real numbers x and if the maximum value of f(x) is 5 and the minimum value of f(x) is -7, then which of the following must be true?
 - I. The maximum value of f(|x|) is 5.
 - II. The maximum value of |f(x)| is 7.
 - III. The minimum value of f(|x|) is 0.
 - (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III

- 37. $\lim_{x\to 0} (x\csc x)$ is
 - (A) $-\infty$
- (B) -1
- (C) 0
- (D) 1
- (E) ∞

- 38. Let f and g have continuous first and second derivatives everywhere. If $f(x) \le g(x)$ for all real x, which of the following must be true?
 - I. $f'(x) \le g'(x)$ for all real x
 - II. $f''(x) \le g''(x)$ for all real x
 - III. $\int_0^1 f(x) dx \le \int_0^1 g(x) dx$
 - (A) None
- (B) I only
- (C) III only
- (D) I and II only
- (E) I, II, and III
- 39. If $f(x) = \frac{\ln x}{x}$, for all x > 0, which of the following is true?
 - (A) f is increasing for all x greater than 0.
 - (B) f is increasing for all x greater than 1.
 - (C) f is decreasing for all x between 0 and 1.
 - (D) f is decreasing for all x between 1 and e.
 - (E) f is decreasing for all x greater than e.
- 40. Let f be a continuous function on the closed interval [0,2]. If $2 \le f(x) \le 4$, then the greatest possible value of $\int_0^2 f(x) dx$ is
 - (A) 0
- (B) 2
- (C) 4
- (D) 8
- (E) 16
- 41. If $\lim_{x\to a} f(x) = L$, where L is a real number, which of the following must be true?
 - (A) f'(a) exists.
 - (B) f(x) is continuous at x = a.
 - (C) f(x) is defined at x = a.
 - (D) f(a) = L
 - (E) None of the above

$$42. \quad \frac{d}{dx} \int_2^x \sqrt{1+t^2} \, dt =$$

(A) $\frac{x}{\sqrt{1+x^2}}$

(B) $\sqrt{1+x^2}-5$

(C) $\sqrt{1+x^2}$

(D) $\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$

(E) $\frac{1}{2\sqrt{1+r^2}} - \frac{1}{2\sqrt{5}}$

43. An equation of the line tangent to $y = x^3 + 3x^2 + 2$ at its point of inflection is

(A) y = -6x - 6

(B) y = -3x + 1

(C) v = 2x + 10

(D) y = 3x - 1

(E) y = 4x + 1

The average value of $f(x) = x^2 \sqrt{x^3 + 1}$ on the closed interval [0,2] is

- (A) $\frac{26}{9}$ (B) $\frac{13}{3}$ (C) $\frac{26}{3}$ (D) 13

- (E) 26

The region enclosed by the graph of $y = x^2$, the line x = 2, and the x-axis is revolved about the y-axis. The volume of the solid generated is

- (A) 8π (B) $\frac{32}{5}\pi$ (C) $\frac{16}{3}\pi$ (D) 4π (E) $\frac{8}{3}\pi$