55 Minutes—No Calculator

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.

- What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$? 1.
 - (A) 5
- $(B) \quad 0$
- (C) $-\frac{10}{3}$ (D) -5

- The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown above. What is the value of $\int_{-1}^4 f(x) \, dx ?$
 - (A) 1
- (B) 2.5
- (C) 4
- (D) 5.5
- (E) 8

- $\int_{1}^{2} \frac{1}{x^2} dx =$
 - (A) $-\frac{1}{2}$ (B) $\frac{7}{24}$ (C) $\frac{1}{2}$

- (E) 2ln 2

- If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be 4. false?
 - (A) $f'(c) = \frac{f(b) f(a)}{b}$ for some c such that a < c < b.
 - f'(c) = 0 for some c such that a < c < b. (B)
 - f has a minimum value on $a \le x \le b$.
 - f has a maximum value on $a \le x \le b$.
 - $\int_{a}^{b} f(x)dx \text{ exists.}$
- $\int_0^x \sin t \, dt =$
 - (A) $\sin x$
- (B) $-\cos x$
- (C) $\cos x$
- (D) $\cos x 1$
- (E) $1-\cos x$

- If $x^2 + xy = 10$, then when x = 2, $\frac{dy}{dx} =$
 - (A) $-\frac{7}{2}$ (B) -2 (C) $\frac{2}{7}$ (D) $\frac{3}{2}$

- $7. \qquad \int_1^e \left(\frac{x^2-1}{x}\right) dx =$
- (A) $e^{-\frac{1}{2}}$ (B) $e^2 e$ (C) $\frac{e^2}{2} e + \frac{1}{2}$ (D) $e^2 2$ (E) $\frac{e^2}{2} \frac{3}{2}$
- Let f and g be differentiable functions with the following properties: 8.
 - g(x) > 0 for all x
 - f(0) = 1(ii)

If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) =

- (A) f'(x)
- (B) g(x)
- $(C) e^{x}$
- $(D) \quad 0$
- (E) 1

- The flow of oil, in barrels per hour, through a pipeline on July 9 is given by the graph shown 9. above. Of the following, which best approximates the total number of barrels of oil that passed through the pipeline that day?
 - (A) 500
- 600 (B)
- (C) 2,400
- (D) 3,000
- (E) 4,800
- What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 2}{x 1}$?
- (B) $\frac{1}{6}$ (C) $\frac{1}{2}$
- (D) 2
- (E) 6

- 11. If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$
 - (A) = 0
- (C) $\frac{ab}{2}$

- 12. If $f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2 \\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$ then $\lim_{x \to 2} f(x)$ is
 - (A) ln 2
- (B) ln 8
- ln 16 (C)
- (D)
- (E) nonexistent

- 13. The graph of the function f shown in the figure above has a vertical tangent at the point (2,0) and horizontal tangents at the points (1,-1) and (3,1). For what values of x, -2 < x < 4, is f not differentiable?
 - - (B) 0 and 2 only (C) 1 and 3 only
- (D) 0, 1, and 3 only (E) 0, 1, 2, and 3
- 14. A particle moves along the x-axis so that its position at time t is given by $x(t) = t^2 6t + 5$. For what value of t is the velocity of the particle zero?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

- 15. If $F(x) = \int_0^x \sqrt{t^3 + 1} dt$, then F'(2) =
 - (A) -3
- (B) -2 (C) 2
- (D) 3
- (E) 18

- 16. If $f(x) = \sin(e^{-x})$, then f'(x) =
 - (A) $-\cos(e^{-x})$
 - (B) $\cos(e^{-x}) + e^{-x}$
 - (C) $\cos(e^{-x}) e^{-x}$
 - (D) $e^{-x}\cos(e^{-x})$
 - (E) $-e^{-x}\cos(e^{-x})$

- The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f(1) < f'(1) < f''(1)
 - (B) f(1) < f''(1) < f'(1)
 - (C) f'(1) < f(1) < f''(1)
 - (D) f''(1) < f(1) < f'(1)
 - (E) f''(1) < f'(1) < f(1)
- 18. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0,1) is
 - (A) y = 2x + 1
- (B) y = x + 1 (C) y = x
- (D) y = x 1
- (E) y = 0
- 19. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x = x

- (A) -1 only (B) 2 only (C) -1 and 0 only (D) -1 and 2 only (E) -1, 0, and 2 only
- What are all values of k for which $\int_{-3}^{k} x^2 dx = 0$? 20.
 - (A) -3
- $(B) \quad 0$
- (C)
- (D) -3 and 3
- (E) -3, 0, and 3

- 21. If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be

- (B) $2e^{kt}$ (C) $e^{kt} + 3$ (D) kty + 5 (E) $\frac{1}{2}ky^2 + \frac{1}{2}$

- 22. The function f is given by $f(x) = x^4 + x^2 2$. On which of the following intervals is f increasing?
 - (A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
 - (B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
 - (C) $(0,\infty)$
 - (D) $\left(-\infty,0\right)$
 - (E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$

23. The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

(A)

(B)

(C)

(D)

(E)

- The maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$ is
 - (A) 9
- (B) 12
- (C) 14
- (D) 21
- (E) 40
- What is the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 2?
 - (A) $\frac{2}{3}$

- (B) $\frac{8}{3}$ (C) 4 (D) $\frac{14}{3}$ (E) $\frac{16}{3}$

x	0	1	2
f(x)	1	k	2

- The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k = 1
 - (A)
- (B) $\frac{1}{2}$ (C) 1
- (E) 3
- What is the average value of $y = x^2 \sqrt{x^3 + 1}$ on the interval [0,2]?
- (B) $\frac{52}{9}$ (C) $\frac{26}{3}$ (D) $\frac{52}{3}$
- (E) 24

- 28. If $f(x) = \tan(2x)$, then $f'\left(\frac{\pi}{6}\right) =$
 - (A) $\sqrt{3}$
- (B) $2\sqrt{3}$
- (C) 4
- (E) 8