AP Calculus 2007 Released Multiple-Choice CALCULATOR REQUIRED: $(76-92)$ Time $=50$ minutes.
76. A particle moves along the x -axis so that at any time $t \geq 0$ its velocity is given by $v(t)=t^{2} \ln (t+2)$. What is the acceleration of the particle at time $t=6$?
a) 1.500
b) 20.453
c) 29.453
d) 74.860
e) 133.417
77. If $\int_{0}^{3} f(x) d x=6$ and $\int_{3}^{5} f(x) d x=4$, then $\int_{0}^{5}(3+2 f(x)) d x=$
a) 10
b) 20
c) 23
d) 35
e) 50
78. For $t \geq 0$ hours, H is a differentiable function of f that gives the temperature, in degrees Celsius, at an Arctic weather station. Which of the following is the best interpretation of $H^{\prime}(24)$?
a) The change in temperature during the first day.
b) The change in temperature during the $24^{\text {th }}$ hour.
c) The average rate at which the temperature changed during the $24^{\text {th }}$ hour.
d) The rate at which the temperature is changing during the first day.
e) The rate at which the temperature is changing at the end of the $24^{\text {th }}$ hour.
79. A spherical tank contains 81.637 gallons of water at time $t=0$ minutes. For the next 6 minutes, water flows out of the tank at a rate of $9 \sin (\sqrt{t+1})$ gallons per minute. How many gallons of water are in the tank at the end of the 6 minutes?
a) 36.606
b) 45.031
c) 68.858
d) 77.355
e) 126.668
80. A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int_{0}^{1} f(x) d x$, each using the same number of subintervals. The graph of the function f is shown in the figure at the right. Which of the sums give an underestimate of the value of $\int_{0}^{1} f(x) d x$?
I. Left sum
II. Right sum
III. Trapezoidal sum

a) I only
b) II only
c) III only
d) I and III only
e) II and III only
81. The first derivative of the function f is given by $f^{\prime}(x)=x-4 e^{-\sin (2 x)}$. How many points of inflection does the graph of f have on the interval $0<x<2 \pi$?
a) Three
b) Four
c) Five
d) Six
e) Seven
82. If f is a continuous function on the closed interval $[\mathrm{a}, \mathrm{b}]$, which of the following must be true?
a) There is a number c in the open interval (a, b) such that $\mathrm{f}(\mathrm{c})=0$.
b) There is a number c in the open interval (a, b) such that $\mathrm{f}(\mathrm{a})<\mathrm{f}(\mathrm{c})<\mathrm{f}(\mathrm{b})$.
c) There is a number c in the closed interval $[\mathrm{a}, \mathrm{b}]$ such that $f(c) \geq f(x)$ for all x in $[\mathrm{a}, \mathrm{b}]$.
d) There is a number c in the open interval (a, b) such that $f^{\prime}(c)=0$.
e) There is a number c in the open interval (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
83.

x	2.5	2.8	3.0	3.1
$f(x)$	31.25	39.20	45	48.05

The function f is differentiable and has values as shown in the table above. Both f^{\prime} and $f^{\prime \prime}$ are strictly increasing on the interval $0 \leq x \leq 5$. Which of the following could be the value of $f^{\prime}(3)$?
a) 20
b) 27.5
c) 29
d) 30
e) 30.5
84. The graph of f^{\prime}, the derivative of the function f , is shown below. On which of the following intervals is f decreasing?
a) $[2,4]$ only
b) $[3,5]$ only
c) $[0,1]$ and $[3,5]$
d) $[2,4]$ and $[6,7]$
e) $[0,2]$ and $[4,6]$

The base of a loudspeaker is determined by the two curves $y=\frac{x^{2}}{10}$ and $y=-\frac{x^{2}}{10}$ for $1 \leq x \leq 4$, as shown in the figure at the right. For this loudspeaker, the cross-sections perpendicular to the x -axis are squares. What is the volume of the loudspeaker, in cubic units?

a) 2.046
b) 4.092
c) 4.200
d) 8.184
e) 25.711
86.

x	3	4	5	6	7
$f(x)$	20	17	12	16	20

The function f is continuous and differentiable on the closed interval [3, 7]. The table above gives selected values of f on this interval. Which of the following statements must be true?
I. The minimum value of f on $[3,7]$ is 12 .
II. There exists c , for $3<\mathrm{c}<7$, such that $f^{\prime}(c)=0$.
III. $\quad f^{\prime}(x)>0$ for $5<\mathrm{x}<7$.
a) I only
b) II only
c) III only
d) I and III only
e) I, II and III
87.

The figure above shows the graph of f^{\prime}, the derivative of the function f , on the open interval $-7<\mathrm{x}<7$. If f^{\prime} has four zeros on $-7<x<7$, how many relative maxima does f have on $-7<\mathrm{x}<7$?
a) One
b) Two
c) Three
d) Four
e) Five
88. The rate at which water is sprayed on a field of vegetables is given by $R(t)=2 \sqrt{1+5 t^{3}}$, where t is in minutes and $\mathrm{R}(\mathrm{t})$ is in gallons per minute. During the time interval $0 \leq t \leq 4$, what is the average rate of water flow, in gallons per minute?
a) 8.458
b) 13.395
c) 14.691
d) 18.916
e) 35.833
89.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-2	-3	4

The table above gives values of the differentiable functions f and g and their derivatives at $\mathrm{x}=1$. If $h(x)=(2 f(x)+3)(1+g(x))$, then $h^{\prime}(1)=$
a) -28
b) -16
c) 40
d) 44
e) 47
90. The functions f and g are differentiable, and $f(g(x))=x$ for all x . If $\mathrm{f}(3)=8$ and $f^{\prime}(3)=9$, what are the values of $g(8)$ and $g^{\prime}(8)$?
a) $g(8)=\frac{1}{3}$ and $\mathrm{g}^{\prime}(8)=-\frac{1}{9}$
b) $g(8)=\frac{1}{3}$ and $\mathrm{g}^{\prime}(8)=\frac{1}{9}$
c) $g(8)=3$ and $g^{\prime}(8)=-9$
d) $g(8)=3$ and $\mathrm{g}^{\prime}(8)=-\frac{1}{9}$
e) $g(8)=3$ and $g^{\prime}(8)=\frac{1}{9}$
91. A particle moves along the x -axis so that its velocity at any time $t \geq 0$ is given by $v(t)=5 t e^{-t}-1$. At $\mathrm{t}=0$ the particle is at position $x=1$. What is the total distance traveled by the particle from $t=0$ to $t=4$?
a) 0.366
b) 0.542
c) 1.542
d) 1.821
e) 2.821
92. Let f by the function with first derivative defined by $f^{\prime}(x)=\sin \left(x^{3}\right)$ for $0 \leq x \leq 2$. At what value of x does f attain its maximum value on the closed interval $0 \leq x \leq 2$?
a) 0
b) 1.162
c) 1.465
d) 1.845
e) 2

