Chapter 2 MC Questions

1. A particle moves on the x-axis in such a way that its position at time t is given by $x(t)=3 t^{5}-25 t^{3}+60 t$. For what values of t is the particle moving to the left?
A) $-2<t<1$ only
B) $-2<$ t <-1 and $1<$ t <2
C) $-1<$ t <1 and t >2
D) $1<t<2$ only
E) t $<-2,-1<\mathrm{t}<1$, and $\mathrm{t}>2$
2. If the line $y=4 x+3$ is tangent to the curve $y=x^{2}+c$, then c is
A) 2
B) 4
C) 7
D) 11
E) 15
3. The volume of an expanding sphere is increasing at a rate of 12 cubic feet per second. When the volume of the sphere is 36π cubic feet, how fast, in square feet per second, is the surface area increasing?
A) 8
B) 6
C) 8π
D) $\frac{8 \pi}{3}$
E) $\quad 10$
4. Consider the function $f(x)=\left\{\begin{array}{cl}\frac{\sin x}{x} & x \neq 0 \\ k & x=0\end{array}\right.$

In order for $f(x)$ to be continuous at $\mathrm{x}=0$, the value of k must be
A) 0
B) 1
C) -1
D) π
E) a number greater than 1
5. If $y^{2}-2 x y=21$ then $\frac{d y}{d x}$ at the point $(2,-3)$ is
A) $-6 / 5$
B) $-3 / 5$
C) $-2 / 5$
D) $3 / 8$
E) $3 / 5$
6. It $\sin (x y)=x^{2}$, then $\frac{d y}{d x}=$
A) $\quad 2 x \sec (x y)$
B) $\quad \frac{\sec (x y)}{x^{2}}$
C) $2 x \sec (x y)-y$
D) $\frac{2 x \sec (x y)}{y}$
E) $\quad \frac{2 x \sec (x y)-y}{x}$
7. The equation of the normal line to the curve $y=\sqrt[3]{x^{2}-1}$ at the point where $x=3$ is
A) $y+12 x=38$
B) $y-4 x=10$
C) $y+2 x=4$
D) $\quad y+2 x=8$
E) $y-2 x=-4$
8. The table below gives values of a differentiable function f . Estimate $f^{\prime}(2)$.

| X | 1.92 | 1.94 | 1.96 | 1.98 | 2.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 6.00 | 5.00 | 4.40 | 4.10 | 4.00 |

A) $\quad-0.10$
B) $\quad-6.20$
C) -5
D) -10
E) -25
9. The equation of the tangent line to the curve $y=\frac{3 x+4}{4 x-3}$ at the point $(1,7)$ is
A) $y+25 x=32$
B) $y-31 x=-24$
C) $y-7 x=0$
D) $y+5 x=12$
E) $y-25 x=-18$
10. A particle moves along the x -axis so that any time t its position is given by $x(t)=\frac{1}{2} \sin t+\cos (2 t)$.

What is the acceleration of the particle at $t=\frac{\pi}{2}$?
A) 0
B)
$1 / 2$
C) $3 / 2$
D) $5 / 2$
E) $7 / 2$
11. The table shows the velocity at time t of an object moving along a line. Estimate the acceleration (in $\left.\mathrm{ft} / \mathrm{sec}^{2}\right) \mathrm{tt}=6 \mathrm{sec}$.

t (sec)	0	4	8	10
velocity	18	16	10	0

A)
B) $\begin{array}{ll}-1.8 & \text { C) }\end{array}$
-1.5
D) 1.5
E) 6
12. Two cars are traveling along perpendicular roads, car A at 40 mph , car B at 60 mph . At noon, when car A reaches the intersection, car B is 90 miles away, and moving toward it. At 1 pm , the rate, in miles per hour, at which the distance between the cars is changing is
A) $\quad 40$
B) 68
C) 4
D) -4
E) 40
13. If $f(x)=\cos x \sin 3 x$, then $f^{\prime}\left(\frac{\pi}{6}\right)$ is equal to
A)
B) $-\frac{\sqrt{3}}{2}$
C) 0
D) 1
E) $-\frac{1}{2}$
14. If $f(x)=(x-1)^{2} \cos x$, then $f^{\prime}(0)=$
A) -2
B) -1
C) 0
D) 1
E) 2
15. If the radius of a sphere is increasing at a rate of 2 inches per second, how fast, in cubic inches per second, is the volume increasing when the radius is 10 inches?
A) 800 m
B) 800
C) 3200π
D) 40π
E) 80π
16. If $f(x)=x^{3}-x+3$ and if c is the only real number such that $f(c)=0$, then c is between
A) -2 and -1
B) -1 and 0
C) 0 and 1
D) 1 and 2
E) 2 and 3
17. A particle moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=3 t^{3}-15 t^{2}-24 t$. At which time t is the particle at rest?
A) never
B) 0 only
C) $\frac{2}{3}$ only
D) $\frac{2}{3}$ and
4 E) $0, \frac{2}{3}$ and 4
18. If $f(x)=x \cdot \sqrt[3]{x}$, then $f^{\prime}(x)=$
A) $4 x^{3}$
B) $\frac{3}{7} x^{7 / 3}$
C) $\frac{4}{3} x^{1 / 3}$
D) $\frac{1}{3} x^{1 / 3}$
E) $\frac{1}{3} x^{-2 / 3}$
19. If $f(x)=\frac{\sin ^{2} x}{1-\cos x}$, then $f^{\prime}(x)=$
A) $\cos x \quad B) \sin x \quad C)-\sin x \quad D)-\cos x \quad E) 2 \cos x$
20. $\lim _{x \rightarrow+\infty} \frac{x-\frac{1}{2 x}}{2 x+\frac{1}{6 x}}$ is

$$
\left.\left.\left.A)-3 \quad B)-\frac{1}{2} \quad C\right)-\frac{1}{3} \quad D\right) \frac{1}{2} \quad E\right) 2
$$

21. The $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$ at the point $\mathrm{x}=2$ is
A) $36 \quad B) 12 \quad C) 8 \quad D) 2 \quad E) 0$
22. At what point on the curve $\mathrm{x}^{3}-\mathrm{y}^{2}+\mathrm{x}^{2}=0$ is the tangent line vertical?
(A) $(9,0)$ only
(B) $(-1,0)$ only
(C) $(1, \sqrt{2})$ only
(D) $(-1,0)$ and $(0,0)$
(E) The tangent line is never vertical.
23. If $x+y=x y$, then $\frac{d y}{d x}$ is
(A) $\frac{1}{x-1}$
(B) $\frac{y-1}{x-1}$
(C) $\frac{1-y}{x-1}$
(D) $x+y-1$
(E) $\frac{2-x y}{y}$
24. Suppose that f is a continuous function defined for all real numbers x and $f(-5)=3$ and $f(-1)=-2$.
If $f(\mathrm{x})=0$ for one and only one value of x, then which of the following could be x ?
(A) $\quad-7$
(B) -2
(C) 0
(D) 1
(E) 2
25. If $f(x)=(2+3 z)^{4}$, then the fourth derivative of f is
(A) 0
(B) 4 (3)
(C) $4 \mid\left(3^{4}\right)$
(D) $4!\left(3^{5}\right)$
(E) $4 \mid(2+3 x)$
26. What is the $50^{\text {th }}$ derivative of $\cos x$?
(A) $-\cos x$
(B) $\cos x$
(C) $\sin x$
(D) $-\sin x$
(E) 0
27. Let f and g be differentiable functions such that

$$
\begin{aligned}
& f(1)=4, g(1)=3, f^{\prime}(3)=-5 \\
& f^{\prime}(1)=-4, g^{\prime}(1)=-3, g^{\prime}(3)=2
\end{aligned}
$$

If $h(x)=f(g(x))$, then $h^{\prime}(1)=$
(A) -9
(B) 15
(C) 0
(D) -5
(E) -12
28. A particle moves along the x-axis in such a way that its position at time t is given by $x(t)=\frac{1-t}{1+t}$. What is the acceleration of the particle at time $t=0$?
(A) $-\frac{3}{5}$
(B) -4
(C) 4
(D) 2
(E) -2
29. The equation of the tangent line to the curve $x^{2}+y^{2}=169$ at the point $(5,-12)$ is
(A) $5 x-12 x=-120$
(B) $5 y-12 x=119$
(C) $5 x-12 y=169$
(D) $12 x+5 y=0$
(E) $12 x+5 y=169$
30. If $f(x)=\sqrt{4 \sin x+2}$, then $f^{\prime}(0)=$
(A) -2
(B) ${ }^{\circ}$
(C) $\sqrt{2}$
(D) $\frac{\sqrt{2}}{2}$
(E) 1
31. The graph of which function has $y=-1$ as an asymptote?
(A) $y=e^{-x}$
(B) $y=\frac{-x}{1-x}$
(C) $y=\ln (x+1)$
(D) $y=\frac{x}{x+1}$
(E) $y=\frac{x}{1-x}$
32. If $f(x)=\left\{\begin{array}{ll}x^{2}+2, & x \leq 1 \\ 2 x+1, & x>1\end{array}\right.$, then $f^{\prime}(1)$ is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 3
(E) nonexistent
33. If f is a function such that $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0$, which of the following must be true?
(A) $\lim _{x \rightarrow a} f(x)$ does not exist
(B) $f(a)$ does not exist
(C) $f(a)=0$
(D) $f(a)=0$
(E) $f(x)$ is continuous at $x=0$
34. The $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$ at $x=3$ is
(A) 0
(B) 1
(C) 3
(D) -1
(E) notexistent
35. $\lim _{h \rightarrow 0} \frac{\tan 2(x+h)-\tan (2 x)}{h}$ is
(A) 0
(B) $2 \cot (2 x)$
(C) $\sec ^{2}(2 x)$
(D) $2 \sec ^{2}(2 x)$
(E) nonexistent
36. $\lim _{x \rightarrow \infty} \frac{10^{8} x^{5}+10^{6} x^{4}+10^{4} x^{2}}{10^{9} x^{6}+10^{7} x^{5}+10^{5} x^{3}}$ is
(A) 0
(B) 1
(C) -
(D) $\frac{1}{10}$
(E) $-\frac{1}{10}$
37. If $f(x)=\frac{x^{2}-9}{x+3}$ is continuous at $x=-3$, then $f(-3)=$
(A) 3
(B) - -
(C) 0
(D) 6
(E) -6
38. The equation of the line tangent to the curve $y=\frac{k x+8}{k+x}$ at $x=-2$ is $y=x+4$. What is the value of k ?
(A) -3
(B) -1
(C) 1
(D) 3
(E) 4
39. If $x^{2} y+y x^{2}=6$, then $\frac{d^{2} y}{d x^{2}}$ at the point $(1,3)$ is
(A) -18
(B) -6
(C) 6
(D) 12
(E) 18
40. Which of the following are the equations of all horizontal and vertical asymptotes for the curve $y=\frac{x}{x\left(x^{2}-4\right)}$?

Horizontal Asymptote

(A) $y=1$
(B) $y=0$
(C) $y=0$
(D) $y=1$
E) None

Vertical Asymptote

$$
\begin{aligned}
& x=-2 \text { and } x=2 \\
& x=-2, x=0, \text { and } x=2 \\
& x=-2 \text { and } x=2 \\
& x=-2, x=0, \text { and } x=2 \\
& x=-2 \text { and } x=2
\end{aligned}
$$

