AP Calculus AB Chapter 8-9 Review

#1

If $\frac{dy}{dx} = 2y^2$ and if y = -1 when x = 1, then when x = 2, y =

- (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$ (C) 0

- (E) $\frac{2}{3}$

#2

Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?

- (B) $\frac{2 \ln 3}{\ln 2}$ (C) $\frac{\ln 3}{\ln 2}$ (D) $\ln \left(\frac{27}{2}\right)$ (E) $\ln \left(\frac{9}{2}\right)$

#3

A particle with velocity at any time t given by $v(t) = e^t$ moves in a straight line. How far does the particle move from t = 0 to t = 2?

- (A) $e^2 1$ (B) e 1
- (C) 2e
- (D) e^2 (E) $\frac{e^3}{3}$

At each point (x, y) on a certain curve, the slope of the curve is $3x^2y$. If the curve contains the point (0,8), then its equation is

$$(A) \quad y = 8e^{x^3}$$

(B)
$$y = x^3 + 8$$

(C)
$$y = e^{x^3} + 7$$

(D)
$$y = \ln(x+1) + 8$$

(E)
$$y_n^2 = x^3 + 8$$

#5

If the position of a particle on the x-axis at time t is $-5t^2$, then the average velocity of the particle for $0 \le t \le 3$ is

(B)
$$-30$$

$$(C)$$
 -15

(D)
$$-10$$
 (E) -5

$$(E)$$
 -5

If
$$\frac{dy}{dx} = \cos(2x)$$
, then $y =$

(A)
$$=\frac{1}{2}\cos(2x)+C$$

(A)
$$= \frac{1}{2}\cos(2x) + C$$
 (B) $-\frac{1}{2}\cos^2(2x) = C$

$$(C) = \frac{1}{2}\sin(2x) + C$$

(D)
$$-\frac{1}{2}\sin^2(2x) + C$$

$$(E) = \frac{1}{2}\sin(2x) + C$$

If
$$\frac{dy}{dy} = 4y$$
 and if $y = 4$ when $y = 0$, then $y =$

$$(A)$$
 $4e^{4\pi}$

(B)
$$e^{4x}$$

(C)
$$3 + e^{4x}$$
 (D) $4 + e^{4x}$ (E) $2x^2 + 4$

(D)
$$4 \cdot e^{4x}$$

(E)
$$2x^2 + 4$$

A point moves in a straight line so that its distance at time t from a fixed point of the line is $8r - 3r^2$. What is the *total* distance covered by the point between r = 1 and r = 2?

(B)
$$\frac{4}{3}$$

$$(C) = \frac{5}{3}$$

$$(\mathbf{D})$$
 3

The acceleration α of a body moving in a straight line is given in terms of time i by $\alpha = 8-6i$. If the velocity of the body is 25 at t=1 and if s(t) is the distance of the body from the origin at time L what is s(4) - s(2)?

$$(D) = 32$$

#10

If the graph of $\mathbf{y} = f(x)$ contains the point (0, 2), $\frac{d\mathbf{v}}{dx} = \frac{\mathbf{y}}{\sqrt{\mathbf{v}}^2}$ and f(x) > 0 for all x, then $f(x) = \frac{\mathbf{v}}{\mathbf{v}}$

$$(A)$$
 $3+e^{-x^2}$

(B)
$$\sqrt{3} + e^{-3}$$

$$(C)$$
 $1+e^{-c}$

(D)
$$\sqrt{3+e^{-x^2}}$$

(E)
$$\sqrt{3+e^{x^2}}$$

At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is $24t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?

 (\mathbf{A})

(B)

(E)192

If
$$\frac{dy}{dx} = \tan x$$
, then $y =$

(A)
$$\frac{1}{2}\tan^2 x + C$$

(B)
$$\sec^2 x + C$$

(C)
$$\ln |\sec x| + C$$

(D)
$$\ln \cos x + C$$

(E)
$$\sec x \tan x + C$$