In Exercises 1 and 2, find the derivative of the function by using the definition of the derivative.

1.
$$f(x) = x^2 - 2x + 3$$

$$2. \ f(x) = \frac{x+1}{x-1}$$

In Exercises 3. 9 find the derivative of the algebraic function.

$$\int_{0}^{\infty} f(x) = x^3 - 3x^2$$

$$f(x) = x^{1/2} - x^{-1/2}$$

$$\Delta f(x) = \frac{2x^3 - 1}{x^3}$$

$$S f(x) = \frac{x+1}{x-1}$$

$$(\xi, g(t)) = \frac{2}{3t^2}$$

$$4 \quad h(x) = \frac{2}{(3x)^2}$$

$$6 \cdot f(x) = \sqrt{1 - x^2}$$

In Exercises 13-15 find the derivative of the trigonometric

$$(5 \cdot y = 3 \cos(3x - 1))$$

$$U_{x}y = 1 - \cos 2x + 2\cos^{2}x$$

$$11 = y = \frac{1}{2} \csc 2x$$

$$\frac{1}{14}$$
, $v = \csc 3x + \cot 3x$

13,
$$y = \frac{x}{2} - \frac{\sin 2x}{4}$$

$$\int_{0}^{\infty} y = \frac{1 + \sin x}{1 - \sin x}$$

16 - 9 use implicit differentiation to find dy/dx.

$$(k x^2 + 3xy + y^3 = 10)$$

$$18 \cdot x^{2} + 9y^{2} - 4x + 3y = 0$$
$$19 \cdot y^{2} = (x - y)(x^{2} + y)$$

$$17. y\sqrt{x} - x\sqrt{y} = 16$$

$$(4x y^2 = (x - y)(x^2 + y)$$

In Exercises 20-21 find the equations of the tangent line and the normal line to the graph of the equation at the indicated point

$$42.3y = (x + 3)^3$$
, -2.4

$$a_1 \cdot y = (x - 2)^2, \quad (2, 0)$$

is Exercises and allocate the absolute extrema of the function the closed interval.

$$\Im \lambda_{r} g(x) = 2x + 5 \cos x, \quad [0, 2\pi] +$$

$$\int_{x}^{\frac{1}{2}} s_{x} f(x) = \frac{x}{\sqrt{x^{2} + 1}}, \quad [0, 2]$$

In Exercises 2-2) find the critical numbers (if any) and the open intervals on which the function is increasing or decreasing.

$$\frac{24}{x^2}$$
, $f(x) = (x - 1)^2(x - 3)$

$$\chi \tilde{\chi}, \ \chi(x) = (x-1)^3$$

$$34 \cdot h(x) = \sqrt{x}(x-3)$$

$$\mathfrak{Z}(x) = \sin x - \cos x, \qquad 0 \le x \le 2\pi$$

In Exercises 25-24 find the point(s) guaranteed by the Mean Value Theorem for the indicated interval. $2^{\alpha} f(x) = x^{2/3}$ $2^{\alpha} f(x) = \frac{1}{x^{2/3}}$

$$\Re f(x) = x^{2/3}$$

$$39 f(x) = 3$$

$$1 \le x \le 8$$

$$1 \le x \le 4$$

In Exercises ∞ - 3, find any vertical and horizontal asymptotes of the graph of the function.

$$30 \cdot h(x) = \frac{2x + 3}{x - 4}$$

$$32. \ g(x) = \frac{5x^2}{x^2 + 2}$$

$$31, \ f(x) = \frac{3}{x} - 2$$

$$\mathcal{B}, \ f(x) = \frac{3x}{\sqrt{x^2 + 2}}$$