Slope Field Practice

(1) This is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=x y$
(B) $\frac{d y}{d x}=\frac{x^{2}}{y}$
(C) $\frac{d y}{d x}=x^{2} y$
(D) $\frac{d y}{d x}=\frac{y}{x}$
(E) $\frac{d y}{d x}=\frac{x}{y}$

(2) This is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=x y^{2}$
(B) $\frac{d y}{d x}=x y$
(C) $\frac{d y}{d x}=\frac{x}{y}$
(D) $\frac{d y}{d x}=\frac{x^{2}}{y}$
(E) $\frac{d y}{d x}=x^{2} y$

(3) The slope field shown at the right is for the differential equation
(A) $y^{\prime}=x+1$
(B) $y^{\prime}=\sin x$
(C) $y^{\prime}=-\sin x$
(D) $y^{\prime}=\cos x$
(E) $y^{\prime}=-\cos x$

(4)

The slope field at the right is for the differential equation
(A) $y^{\prime}=2 x$
(B) $y^{\prime}=2 x-4$
(C) $y^{\prime}=4-2 x$
(D) $y^{\prime}=y$
(E) $y^{\prime}=x+y$

(5) The solution curve of $y^{\prime}=y$ that passes through point $(2,3)$ is
(A) $y=e^{x}+3$
(B) $y=\sqrt{2 x+5}$
(C) $y=0.406 e^{x}$
(D) $y=e^{x}-\left(e^{2}+3\right)$
(E) $y=e^{x} /(0.406)$

Use the grapisot

I-V for * 6-10. Each is used only once
(6) Which slope field is for the differential equation $y^{\prime}=y$?
(A) I
(B) I
(C) III
(D) IV
(E) V
:
Which slope field is for the differential equation $y^{\prime}=-\frac{x}{y}$?
(A) I
(B) II
(C) III
(D) IV
(E) V
(8)

Which slope field is for the differential equation $y^{\prime}=\sin x$?
(A) I
(B) II
(C) III
(D) IV
(E) V
(9) Which slope field is for the differential equation $y^{\prime}=2 x$?
(A) I
(B) $I I$
(C) III
(D) IV
(E) V

Which slope field is for the differential equation $y^{\prime}=e^{-x^{2}}$?
(A) I
(B) II
(C) III
(D) IV
(E) V

Which of the following is the slope field for the differential equation $x \frac{d y}{d x}=y-x$?
(A)

(B)

(C)

(D)

(E)

(12) Which graph shows a slope field with a solution to the differential equation $\frac{d y}{d x}=y^{2}$?
(A)

(B)

(C)

(D)

(E)

Which of the following could be a solution ${ }^{6}$ the differential equation with the given slop g field?

(A) $y=x+1$
(B) $y=x^{2}+2$
(C) $y=x^{3}-2$
(D) $y=\ln (x+1)$
(E) $y=2 e^{x}$

In a slope field, the line segments are
(A) part of the graph of the solution to the differential equation
(B) parts of the lines tangent to the graph of
the solution to the differential equation
(C) asymptotes to the graph of the solution of the differential equation
(D) lines of the symmetry of the graph of the solution to the differential equation
$\left.{ }^{(} \mathrm{E}\right)$ none of the above
2) Drawing a slope field
(A) provides a way of visualizing the solution to a differential equation
'B) can help find horizontal asymptotes to the graph of the solution of the differential equation
C) can serve as a check to the solution of a differential equation

The slope field for the differential equation $\frac{d y}{d x}=x$
(A) has line segments symmetric to the y axis
(B) shows that the solutions to the differential equatio 1 are odd functions
(C) shows that the solutions to the differen-
(D) can give evidence as to the symmetry of the graph of the solution to a differential equation
(E) all of the above

The slope field for the differential equation $\frac{d y}{d x}=x^{2}$
(A) has line segments symmetric to the y axis
(B) shows that the solutions to the differential equation are even functions
(C) shows that the graphs of the solutions are increasing for increasing x
(D) shows that the graphs of the solutions are decreasing for increasing x
(E) shows that there are solutions that have a horizontal asymptote

The slope field for $\frac{d y}{d x}=y$ shows that the solutions to the differential equation
(A) have y-intercept $(0,1)$
(B) have a positive y-intercept
(C) have a horizontal asvmptote
(D) are even functions
(E) are odd functions
(D) shows that the solutions to the differential equation are decreasing for increasing x
(E) shows that there is a horizontal asymptote

