$$
\mathrm{Pd} 2
$$

st semester final Review
Lim $f(x)=0$ $x \rightarrow 0^{-}$
$\lim _{x \rightarrow 0+} f(x)=1$
(6. $f(x) \begin{cases}x^{2}+1 & x \leq 0 \\ 2 x-3, & x>0\end{cases}$
a. $\lim _{x \rightarrow 0}, f(x) \geq$

$$
\therefore 1 \operatorname{lom} f(x) D N E
$$

b. $1 \mathrm{Im}, f(x)$,

$$
3
$$

$$
x>0
$$

$$
x \rightarrow 0^{7}
$$

2. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-3}$

$$
c \quad \lim _{x \rightarrow 0} f(x)=\sqrt{\| N E}
$$

$$
=\lim _{x \rightarrow 1}\left(\frac{x-1)(x+2)}{x-3}\right.
$$

$$
\text { 7. } f(x)=\frac{x^{x}-2}{x^{2}-4}
$$

$$
=10]
$$

3. | $1 \lim _{x} f(x), f(x)=$, |
| :--- | :--- |\(\left\{\begin{array}{l}x^{2}+4, x \neq 1 \\

2, x, x=1\end{array}\right.\)

$$
=x \quad x-2
$$

$$
(x-2)(x+2)
$$

remove able. $x=2$

$$
\lim _{x \rightarrow 1} f(x)=5
$$

hon removeabile. $x=-2$

4

$$
\left\lvert\, \begin{aligned}
& \lim _{x \rightarrow 1,} \frac{x^{2}+x-x^{2}}{x-1} \\
& =\lim _{x \rightarrow 1}\left(\frac{x-1)(x+2)}{x-1}=3\right.
\end{aligned}\right.
$$

b. discontinulous $\frac{\operatorname{mr}+1-\sqrt{2 x^{2}-1}, \operatorname{lt} \sqrt{2 x^{2}-1}}{\rightarrow 1+x-1,1+\sqrt{2 x^{2}-1}}$ $a+: x= \pm$
5

$$
2(1+x)(1-x)
$$

$$
(x+1)\left(1+\sqrt{2 x^{2}-1}\right)
$$

$$
10.1 \mathrm{~m}, 3, \sqrt{(x)]}
$$

$$
\frac{-2(1+x)}{1+\sqrt{2 x^{2}-1}}
$$

$$
=-4 / 2=\sqrt{-2}
$$

$$
\begin{aligned}
& \begin{array}{l}
1 \ln ^{1+\sqrt{2 x^{2}}} \\
x \rightarrow 1-x-1+1 \\
=1-2 x^{2}+1 \\
(x, 1)\left(1+\sqrt{2 x^{2}+1}\right)
\end{array} \\
& =2-2 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } f(x)=\frac{5}{x-1} \quad g(x)=x^{4}
\end{aligned}
$$

12.

$$
\begin{aligned}
& f(x)=x^{2}-x-x^{2} \\
& =\frac{x^{2}+x-6}{(x-2)(x+1)} \\
& (x+3)(x-2) \\
& v A, x=-3
\end{aligned}
$$

$$
(3 x-1)(x-1)=0
$$

$$
x=13,1
$$

$$
3 x^{2}-31=0
$$

$$
x^{2}=1 \quad x= \pm 1
$$

13. a. undefined
b. negative
cazelo d.poditlve
e. zero

$$
\text { 17. } f(x)=x^{3}-3 x
$$

$(1,-2)(-1,2)$

$$
\begin{aligned}
& 18 s(t)=6 t^{2}+240 t, \\
& v(t)=12 t+240, t=2 \\
& 12(2)+240=264 \mathrm{ft} / \mathrm{seg}
\end{aligned}
$$

14
15.

$$
\begin{aligned}
& f(x)=3 x^{3}+2 x, \quad x=1 \\
& 4 x^{3}+2, y=5 \\
& f(x)=11, x \\
& y-5=11(x-1) \\
& y=11 x-6)
\end{aligned}
$$

$a, f(x)=\frac{1}{(x-3)^{2}}$
b $+(2)=1$

$$
\text { 38. } f(x)=x^{3}, 3 x^{2}
$$

$$
f(4)=y, y+x) \quad f(x)=3 x^{2}-6 x=0
$$

C. Roles theorem

$$
3 x(x-2)=0, x=02
$$

docs not apply to f
on the interval $[2,4]$

because if is not
continuous $\quad 39$ de c, $(-9,2) \cup(2, \infty)$
35

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3}+4 x^{3}+1 \\
& f(3)=81-108+36+1=10 \\
& f(-1)=1+4+4+1=10 \\
& f(x)=4 x^{3}-12 x^{2}+8 x=0 \\
& 4 x\left(x^{2}-3 x+2\right)=0 \\
& x=0,(x-1)(x-2) \\
& x=0,1,2
\end{aligned}
$$

$$
\frac{40 . y+\frac{2 x}{2}, y+\left(x+5(2)-(2 x)\left[3(x+4)^{2}\right]\right.}{(x+4)^{3}}
$$

$$
\frac{2(x+1+4)+(12 x)(13)}{(x+4)}=\frac{2 x+8+6 x}{(x+4)^{4}}
$$

34

$$
\begin{aligned}
& f(x)=3 x=x^{2} \\
& f(x)=3-2 x, x \\
& 3-2 x=f(3)-f(2) \\
& 3-2 x=0-2 \\
& 3-2 x=-2 \\
& -2 x=-5 \\
& x=5 / 2
\end{aligned}
$$

$$
41
$$

$$
f(x)=2 x^{3}+3 x^{2}-12 x
$$

$$
6 x^{2}+6 x-1210
$$

$$
6\left(x^{2}(4 x-2)=0(x+1)^{-2}\right.
$$

$$
m i n(1,-7) m a r(-2,20)
$$

$$
\begin{aligned}
& \text { 37. } f(x)=\frac{1}{x^{2}}=x^{-2}\left(f(x)-2 x^{-1}=-2 / x\right. \\
& -2 y x \leq 0, x=0
\end{aligned}
$$

42.

$$
f(x)=-x^{4}+2 x^{3} \text { yr y } 46 f(x)=2 x(x-4)^{3}
$$

$$
f(x)=(2 x)\left[3(x-4)^{2}\right]+(x-4)^{3}(2)
$$

$$
=6 x(x-4)^{2}+2(x+4)^{3}
$$

$$
2(x-4)^{2}[3 x+x-4]
$$

$$
=(x-4)^{2}(8 x-8)
$$

$$
f(x)=(x-4)^{2}(8)+(8 x-8)[2(x-4)]
$$

$$
(x-4) \quad[(x-4) 18) 1+(8 x-1)(2)]
$$

$$
=(x-4)[(8 x-32)+(16 x-16)]
$$

$$
\begin{array}{|l|l}
43 & f(x)=x \\
\hline-4 y) \\
& f(x)=\frac{1-x)-(x)(-1)}{(1-x)^{2}}
\end{array}
$$

$$
3(x-1)[24 x-210]=0
$$

$$
x=2,4
$$

$1+x+x, y,=0,2, r x$

$$
(1-x)^{2}
$$

no critivalets|

$$
47, f(x)=x^{3}-3 x^{2}-x+7
$$

$$
f(x)=3 x^{2}-6 x+1
$$

$$
\mid 1 \cup a, \cup A \quad, \quad f(1 x)=6 x=6=0
$$

4. relative max inurn.

$$
x=1
$$

$\frac{3_{2}^{2} 16 x^{3}+2}{f(x)-x^{4}-4 x^{3}+2}$
15.

$$
48 f(x)=x^{3}, x^{2}+3
$$

$$
f^{\prime}(x)=3 x^{2}-2 x=9
$$

$$
x(3 x-2)=0 \cdot x=0 \cdot x \sqrt{3}
$$

$$
\begin{aligned}
& f(x)=6 x-2 \mu \\
& f^{\prime}(0)=-2 \ln d x \\
& f^{\prime}\left({ }^{2} / \beta\right)=2 \text { min }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{3}+2 \\
& f(x)=4 x^{3}-12 x^{2} \\
& \text { ff }(t x)=12 x^{2}-24 x=0 \\
& (2 x(x-2)=0 \\
& x=0.2
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=-4 x^{3}+6 x^{2} \\
& -2 x^{2}(2 x-3)=0 \\
& x=0,3 / 2 \\
& \frac{t y, t, 5}{0} \frac{3 / z}{t} \\
& x=3 / 2),
\end{aligned}
$$

